

History and Action Plan Overview

Albert J. Wavering

Group Leader, Machine Systems Group
National Institute of Standards and Technology
May 22, 2001

Open Architecture in Metrology Automation Workshop, May 2000

 Purpose: To identify problems related to automated metrology system interoperability, and to identify specific actions towards solving these problems.

• ~50 attendees (users, vendors, third party OEMs,

systems integrators, and government)

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Key Workshop Action Items

- Identify standards gaps and overlaps
- Create or identify an "umbrella" organization to play a leadership role in moving standards to completion and resolving conflicts
- Create National Metrology Testbed

Bring users and vendors together to work toward standardization

"Data exchange roadblocks must be eliminated..."

Targeted impacts:

- Reduction of product development cycle time
- Elimination of redundant programs
- Elimination of proprietary interfaces
- Improved product launch/product quality
- Decreased training expense
 - DaimlerChrysler White Paper:Need for a National Metrology Testbed

Action Item: Identify Standards Gaps and Overlaps

- NIST is producing standards analysis document
- 15 Activities identified
- 39 Interfaces identified
- Currently hot interfaces identified
- Metrology data languages and APIs discussed
- General language and modularizing issues discussed
- More details in next presentation

Metrology Automation Major Systems and Hot Interfaces

Inspection Programming

Active interface from *Activity Coordination*: No commonly used format. Active interface to *Solid Modeling*: multiple commercial modeler APIs. Data interface to *High-level Inspection Instruction Execution*: DMIS input language and multiple commercial CMM programming languages. Data Interface from *Inspection Planning*: STEP AP 219. Data Interface from *CAD*: STEP APs 203, 214, 224 and multiple commercial

Example: Inspection Programming Interfaces active interfaces shown in black, data interfaces in yellow

Action Item: Create National Metrology Testbed

- Need a mechanism for testing interface specifications and implementations
- Proposal: Testbed should be distributed, with single threads through the metrology process implemented at industry locations and at NIST
- Jointly develop interface specifications and conduct pilots to share test procedures, tools, and data to establish conformance and interoperability
- NIST leads development of test methods and the communication of test results
- Plan and coordinate activities via proposed consortium

Distributed Testbed Characteristics

- Limited amount of equipment located at NIST, sufficient for test method development and validation, and for post-mortem analysis of test failures
- Bulk of the equipment involved in testing would be physically distributed and networked
- Actual testing would be done by industry at their nodes, with file sharing via email, ftp, etc.
- NIST node would include an end-to-end thread through design, planning and simulation, execution, and analysis of dimensional inspection
- Based on testing model used in AutoSTEP project

Distributed Testbed Advantages

- No single participant needs to learn and support multiple vendors' software and hardware in each category
- Faster generation of test methods and results
- Increased industry involvement and commitment
- Can include broader range of hardware and software

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Example Testing Scenario

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Action Item: Create Umbrella Organization

- Organizational framework is needed to coordinate specification development and testing activities
- Propose to form a new consortium to address this need
- Role of NIST: Active participation in consortium standards development and testing activities, lead development of test methods and communication of test results
- More details in later presentations